gram matrix
- 网络Gram矩阵;格拉姆矩阵
-
An accurate method in Gram matrix of the criteria of observability in linear system
线性系统格拉姆矩阵可观性判别的精细化方法
-
A simple proof of positive semi-definite of Gram matrix is given , and several important conclusions of Gram determinant are discussed in this paper .
本文给出格拉姆矩阵的半正定性的简单证明,讨论格拉姆行列式的几个重要结论,并应用于一类不等式的证明。
-
In this paper , We prove some properties of Gram matrix .
本文证明了Gram矩阵的一些性质。
-
The Positive Semi-definite of Gram Matrix and it 's Application
格拉姆(Gram)矩阵的半正定性及其应用
-
Some Properties of Gram Matrix
关于Gram矩阵的一些性质
-
Gram Matrix and Hadamard Inequality
Gram方阵与Hadamard不等式
-
Because the directly designed controller always has high order , a balanced method based on Gram matrix is applied to reduce the controller order , which still keeps better control effect .
由于直接设计出的控制器阶数较高,采用了一种基于Gram矩阵的均衡降阶方法,降阶后的控制器仍保持了良好的控制效果。
-
A concept of a variable unit-vector is introduced . A new inequality is built by means of the positive definiteness of Gram matrix .
引入可变单位向量的概念,利用Gram矩阵的正定性创建了一个新的不等式。
-
A strengthened result of Holder 's inequality is attained by means of the positive definiteness of the Gram matrix and Bernoulli 's inequality .
利用Gram矩阵的正定性和Bernoulli不等式得到Holder不等式的一个加强的结果。
-
Especially , when the Gram matrix of kernel function is strict positive , then the samples must be linear distinguishable in the feature space which is induced by the kernel function .
特别地,当核函数的Gram矩阵正定时,观测样本集在由核函数导出的高维特征空间中必然线性可分。(2)基于分类间隔的特征选择。
-
In this paper , we introduce the concept of Gram matrix and study the relations of Gram matrix and positive matrix , obtain a important result : positive matrix must be Gram matrix ;
本文提出了格兰姆矩阵的概念,研究了格兰姆矩阵与正定矩阵的关系,得出了以下重要结论:正定矩阵必为格兰姆矩阵;
-
Third , if a frame with reproducing kernel form is known , a sequence is constructed via its Gram matrix , and the sufficient and necessary condition which become a frame is proved .
第三,若已知一个再生核函数形式的框架,可以通过其Gram矩阵构造一个点列,并证明这个点列成为框架的充分必要条件。
-
Half Positive Definitiveness of Gram 's Matrix in Inner-product Space
内积空间中Gram矩阵的半正定性